fade

MCP-Server in der Analyse
von Analytics-Daten

Infrastruktur und Remote Setup mit
Google Cloud Run

Whitepaper

* .
.........
oooooo

o 4 o .
.
.............
L]
.....
o o

.
000000

............

monr

stade

Inhalt
L B N I UN G o 3
2. Definition, FUNKEIONSWEISE UNA GIreNZeNoveeeee e, 4
2.1 Mogliche Vorteile und Chancen der Technologieccoooiiiiiiiiiii 5
2.2 Grenzen UNA KiK. ... e e 6
3. MCP Use Case: Analyse von GA4-Daten mit GemiNi.........coooovviiiiiiiiiiiieee e 7
3.1 Einrichtung des MCP-SEIVEIS.oiiiiiiiee e 9
3.2 Einrichtung notwendiger Google Cloud Credentialscooooiiiiiiiiiii i 9
3.3 LoKalES SOTUP oo 11
3.4 Remote Setup mit Google Cloud RUN ..o 13
3.5 Anbindung des LLM Gemini (MCP-Clients)ccooooiiiiiiiiiiiie e 15
4. ADBSChIIERENdE WOILEeiiiiiiiiiie e 17
UbBEr MORNISTAAE ... 18

Veroffentlichung dieses Whitepapers: Dezember 2025

nade

1. Einleitung

Self-Service-Analytics galt lange als Hoffnung, Mitarbeitern den
eigenstandigen Zugriff auf Unternehmensdaten und deren Anal-
yse zu ermoglichen. Ziel war es, mehr Verstandnis flr Prozesse,
Abldufe und Geschaftszusammenhéange zu schaffen. In der Praxis
blieb dieser Ansatz jedoch haufig hinter den Erwartungen zurtick.
Fragmentierte Tools, komplexe Schnittstellen und fehlendes
Know-how machten es Fachabteilungen schwer, unabhangig von

Data-Teams wertvolle Erkenntnisse zu gewinnen.

Mit dem Aufkommen von Large Language Models (LLMs) wie
ChatGPT, Claude, Gemini oder Copilot riickt diese Idee nun
wieder in greifbare Ndhe. LLMs ermoglichen es, Daten Uber
natlrliche Sprache zu analysieren, ohne Uber technisches Vor-
wissen zu Tools oder Anwendungen zu verfligen. Damit wird es
fiir Unternehmen denkbar, Analyse- und Performance-Daten
direkt Gber Chat-Interfaces bereitzustellen und so den Self-Ser-
vice-Gedanken neu zu beleben.

Moritz Bauer

Eine zentrale Rolle spielt dabei das Model Context Protocol
(MCP). Das MCP ist ein offener technologischer Standard, Gber
den LLMs sicher und strukturiert mit Datenquellen wie Google
Analytics, BigQuery, Azure Data Lake, AWS Redshift oder anderen
Cloud-Datenbanken und BI-Systemen interagieren konnen. MCP
fungiert als Briicke zwischen KI-Modellen und Datenquellen und
ermoglicht reproduzierbare und kontextbasierte Analysen. Auch
Anbieter wie Google integrieren MCP in ihre bestehenden Sys-
teme und stellen damit erstmals standardisierte, LLM-kompati-

ble Schnittstellen fiir Analyse- und Reporting-Funktionen bereit.

Dieses Whitepaper beschreibt die Grundlagen und Architektur
des MCP und veranschaulicht am Beispiel des Google Analytics
MCP Servers auf Cloud Run, wie diese Technologie in der Praxis

implementiert und genutzt werden kann.

»Zukiinftig wird MCP eine zentrale Rolle dabei spielen, Analytics-
Daten kontextbewusst in Kl-gestiitzten Anwendungen einzubetten.
Mit wachsender Tool-Kompatibilitit und neuen Frameworks wie
FastMCP wird die Entwicklung eigener MCP-Server und Tools
zunehmend einfacher und stabiler. Fiir Data Engineers, Data Analysts
und Architects erdffnet sich damit ein verldsslicher und sicherer Weg,
bestehende Analytics-Infrastrukturen in das Zeitalter kontextbasierter
Datenverarbeitung mit LLMs zu fiihren.”

Director Marketing Technology bei mohrstade

mohr
stade

2. Definition, Funktionsweise und Grenzen

Das Model Context Protocol (MCP) ist ein offener Standard
von Anthropic. Es definiert, wie Modelle (also Large Language
Models oder KI-Agenten) sicher mit Tools, APIs und Daten-
quellen interagieren konnen. Als serverseitige Verarbeitungs-
schicht (Processing Layer) fungiert MCP dabei als standardi-

LLM

(KI-Modell)

—. "™ copilot &) chatepr
% Claude 1) perplexity

Gemini & deepseek

Spracheingabe

Ergebnis

o

sierte Schnittstelle zwischen dem Modell und externen Systemen
wie bspw. BigQuery, Azure Data Lake oder Amazon Redshift. Ein
MCP-Server implementiert konkrete Tools (z. B. ga4_get_report,
bqg_query, realtime_overview), die Gber das Protokoll aufgerufen
werden kénnen.

Cloud-Datenbanken /

Analytics- und BI-Systeme

)

ojojo

G~

O

Y >
= &

db ++
1S e

Abbildung 1: Grundlegende Funktionsweise eines MICP-Servers (Quelle: eigene Darstellung)

,The MCP server exposes tools that allow models to access and analyze Analytics data in a structured, secure and region-
ally controlled environment.” (Quelle: Google - MCP GitHub Repository)

Etwas spezifischer bedeutet das:

1. Der Nutzer gibt einen Prompt ein, worauf der MCP-Client
(z. B. ChatGPT, Copilot oder Gemini) beim MCP-Server
verfligbare Tools abruft.

2. Diese Tools sind definierte Funktionsschnittstellen zu
Datenbanken, Analytics- und BI-Systemen (Looker, Pow-
erBl, Tableau etc.) oder verwandten APIs (z. B. BigQuery,
Azure Data Lake, AWS Redshift).

Die Kommunikation erfolgt Uber standardisierte Transport-
protokolle. In lokalen Entwicklungsumgebungen wird hau-
fig stdio verwendet, wahrend produktive Setups meist auf
HTTP-streamable oder vergleichbare Mechanismen setzen,
um parallele Verbindungen und einen cloudbasierten Betrieb
zu ermoglichen. Der MCP-Server kann in jeder modernen
Cloud-Infrastruktur (z. B. AWS, Azure, Snowflake oder Goo-
gle Cloud) betrieben werden. Allerdings sollte sichergestellt
werden, dass die Datenverarbeitung innerhalb definierter Re-

gionen und Compliance-Richtlinien erfolgt. Der entscheidende

3. Der Server verarbeitet die Anfrage, authentifiziert sich
Uber einen Service Account oder Gber OAuth mit Benut-
zerrechten und ruft die jeweilige API auf.

4. Die Ergebnisse werden strukturiert (z. B. JSON) an den
Client zurlickgegeben, ohne dass dieser direkten API-Zu-
griff bendtigt, und dem Nutzer in natlrlicher Sprache zur
Verfligung gestellt.

Unterschied zu klassischen serverseitigen Tracking-Ansdtzen
(z. B. Tagging-Servern oder Consent-Proxys) besteht darin, dass
MCP keine Tracking-Events oder Cookies verarbeitet. Es stellt
lediglich strukturierte Schnittstellen fir bestehende Tools
und Datenquellen bereit. Large Language Models (LLMs) kon-
nen diese Tools standardisiert fir Abfragen und Analysen nut-
zen, ohne direkten Zugriff auf die Rohdaten zu benétigen. Der
MCP-Server dient somit nicht als "Tracking-Proxy", sondern als
neutrale Integrationsschicht zwischen KI-Modellen und beste-
henden Analytics- oder Datensystemen.

mohr
stade

2.1 Mogliche Vorteile und Chancen der Technologie

Das MCP eroffnet eine neue technologische Ebene fir die In- Durch den standardisierten Tool-Zugriff ilber MCP konnen Un-
tegration von Google Analytics 4 (GA4) und BigQuery in daten- ternehmen und Entwickler Daten sicher, kontrolliert und auto-
getriebene Anwendungen und Kl-gestiitzte Analysen. matisiert in modellbasierte Workflows integrieren.

Standardisierung
MCP definiert ein einheitliches Protokoll, (iber das Modelle (z. B. Gemini) auf Tools und APIs zugreifen konnen. Dadurch entfallt die
bisher notwendige individuelle API-Integration pro Datenquelle.

Sicherheit und Zugriffskontrolle

Der Zugriff auf Analytics- oder BigQuery-Daten erfolgt ausschlielich Gber den MCP-Server, der in einer EU-Region (z. B. europe-west4)
betrieben wird und durch IAM-Policies sowie Secret Manager abgesichert wird. Alternativ kann die Authentifizierung auch iber OAuth
erfolgen. In diesem Fall erhdlt der MCP-Server nur die Berechtigung, die der jeweilige Nutzer beim Zugriff explizit freigibt. Dadurch
lassen sich Zugriffsrechte granularer verwalten und auf Projektebene einschranken.

Datenschutz und regionales Processing

Der MCP-Server selbst kann innerhalb der EU Data Boundary betrieben werden, sodass die Datenverarbeitung regional erfolgt. Die
Abfrage der Analytics-Daten erfolgt hingegen liber die globalen GA4-API-Endpunkte (analyticsdata.googleapis.com). Damit kann die
Verarbeitung zwar regional kontrolliert, jedoch ein vollstandiger "EU-Only-Datenfluss" nicht garantiert werden. Demnach reduziert das
MCP Ubermittlungsrisiken, ersetzt aber keine vertraglichen DatenschutzmaRBnahmen gemaR DSGVO.

Schnittstellen fur LLMs
Modelle wie Gemini oder Claude kénnen durch MCP verschiedene Tools automatisch entdecken, aufrufen und deren Parameter
interpretieren. Das ermoglicht prazise, reproduzierbare und auditierbare Datenabfragen ohne direkten Zugriff auf Rohdaten.

Automatisierung von Analyse- und Reporting-Workflows

Uber Tools wie ga4_get_report oder bq_query lassen sich Berichte generieren, aggregieren und in natiirlicher Sprache {ibersetzen. Das
schafft neue Moglichkeiten fiir die automatisierte Erstellung von Reportings/Dashboards und somit eine Entscheidungsunterstitzung
durch das LLM.

nade

2.2 Grenzen und Kritik

Trotz seiner technologischen Starke befindet sich das MCP noch Anforderungen ergeben sich noch einige Einschrankungen und
in einer frihen Phase der praktischen Adaption. Insbesondere im offene Fragen.

Zusammenspiel von LLMs, Analytics-Daten und regulatorischen

Begrenzte Tool-Verfligbarkeit
Aktuell stellt der Google Analytics MCP-Server nur wenige vordefinierte Tools bereit (z. B. GA4 Data API, BigQuery Export). Komplexe
oder kombinierte Abfragen erfordern eigene Tool-Definitionen oder Anpassungen im Code.

Erhohter technischer Aufwand fir Eigenbetrieb
Der Betrieb eines MCP-Servers auf Cloud Run erfordert Kenntnisse in Containern, IAM, Secrets und Logging. Fiir nicht-technische Teams

kann die Implementierung zunachst komplex wirken.

Offene Governance-Fragen

Das Protokoll selbst wird von der Open-Source-Community (Anthropic/Google) weiterentwickelt. Es gibt noch keinen formellen
Standardisierungsprozess (z. B. Uber IETF oder W3C). Langfristig kann sich die Spezifikation verandern, was regelmaflige Wartung
erforderlich macht. Obwohl der Server die Datenverarbeitung lokalisiert, bleibt der nachgelagerte Modell-Kontext (z. B. Gemini-Session)

ein potenzieller Risikofaktor.

,MCP belebt den Gedanken von Self-Service-Analytics neu. Es verbindet
LLMs direkt mit Datenquellen und erméglicht so auch Mitarbeitenden
ohne technisches Know-how, Analysen einfach liber natiirliche Sprache
durchzufiihren.”

Parick Mohr
Co-Founder und Managing Partner bei mohrstade

mohr
stade

3. MCP Use Case: Analyse von GA4-Daten mit

Gemini

MCP-Host
(Frontend, IDE)

Prompt i3 Ergebnis

MCP-Umgebung Remote Service
Authentifizierung via
Service Account (OAuth2)

GA4 Data API
Web-APIs

6 g
MCP-Server i

o Cloud Run, Gen2 - DN

N

e LLM
R (z.B. Gemini)

BigQuery Export

Abbildung 2: Vereinfachte-MCP-Infrastruktur mit Analytics Backend (Quelle: eigene Darstellung)

Die Abbildung zeigt, wie Large Language Models (LLMs) wie Ge- oder BigQuery. Ziel des Modells ist es, dass es in natirlicher
mini mithilfe des Model Context Protocols (MCP) auf unter- Sprache formulierte Fragen (z.B. ,Wie viele Sitzungen gab es in
schiedliche Datenquellen zugreifen kdnnen. In diesem Szenario der vergangenen Woche?“) in strukturierte API-Abfragen Uber-
fungiert MCP als standardisierte Integrationsschicht zwischen setzen und die Ergebnisse anschlieBend interpretieren kann. Im
dem Modell und externen Systemen wie Google Analytics 4 (GA4) Folgenden wird dieser Prozess einmal detailliert aufgeschlisselt:

1.
Anfrage durch den Nutzer

Im ersten Schritt gibt der Nutzer in einem LLM-basierten System (bspw. Claude, Gemini etc.) eine
natlrliche Sprachabfrage wie z. B. , Zeig mir die Conversions der letzten 7 Tage nach Quelle/Medium*
ein. AnschlieBend tbergibt der Host den Prompt an den MCP-Client (client.py).

4

2.
Verarbeitung durch den
MCP-Client

Der Client hélt die Verbindung zum LLM und kennt die verfligbaren Tools auf den registrierten MCP-
Servern (Tool-Discovery).

Wichtig: Der Client enthdlt keine Secrets fiir GA4/BigQuery. Er ruft ausschliefSlich Tools an.

3.
Function Calling

Der Client Ubermittelt den Prompt, die Tool-Beschreibung (Function-Schema) und optionale
Instruktionen an das Modell (z. B. ,,Nutze GA4-Tool fiir Metriken, BigQuery-Tool fiir Event-Daten”).

Das Modell (Gemini) erzeugt anschlieBend einen function_call mit Tool-Name und Parametern (z.
B. gad_get_report, Property-ID, Zeitraum, Metriken, Dimensionen). Dieser strukturierte Call wird
anschliefend an den MCP-Client zuriickgegeben.

mohr
stade

4,
Ubergabe des funtion_call
an den MCP-Server

Der Client sendet den Funktionsaufruf Gber den standardisierten Transport (HTTP-streamable) an
den MCP-Server, der auf Google Cloud Run (Gen 2) betrieben wird.

5.
Authentifizierung und API-Call

Der MCP-Server interpretiert anschliefend diesen Request, prift das Schema und entscheidet,
welche Datenquelle verwendet werden soll. Flr aggregierte Kennzahlen (z. B. Sitzungen, Nutzer,
Conversions) nutzt er die GA4 Data API. Fir detaillierte, eventbasierte Analysen (z.B. Funnel,
Attributionspfade, Events) nutzt er den BigQuery Export der jeweiligen GA4-Property.

Der MCP-Server kommuniziert Uber Web-APIs mit Google-Diensten. Dabei erfolgt die
Authentifizierung iber einen Google Service Account, dessen Zugangsdaten im Secret Manager oder
als Umgebungsvariable hinterlegt sind.

Der Endpunkt der GA4 Data API (https://analyticsdata.googleapis.com) liefert aggregierte Reports
nach Metriken und Dimensionen (5A), wahrend der BigQuery Export (https://bigquery.googleapis.
com) Abfragen via SQL granular auf Event-Level ermdglicht (5B). Beide Endpunkte liegen innerhalb
der Google Cloud EU Data Boundary, was fir die GDPR-/DSGVO-Konformitat entscheidend ist.

6.
Datenverarbeitung und

Nach Erhalt der Antwort von GA4 oder BigQuery Gbernimmt der Server:
e das Parsing und Normalisieren der Daten (z. B. in JSON- oder Tabellenform)

Formatierung e optional die Aggregation oder Visualisierung (z. B. Diagramm-Spezifikationen fiir Gemini)
e die Vorbereitung fir den Riicktransport an den MCP-Client
{
"header": ["channel", "sessions", "conversions"],
"rows": [
["Organic Search", 5321, 94],
["Direct", 2410, 63],
["Paid Social", 1895, 48]
1,
"metadata": {"source": "GA4 Data API", "fetched_at": "2025-10-09T09:45:00Z"}
¥
Beispiel einer vereinfachten GA4-Server-Antwort
7. Der MCP-Server sendet die verarbeiteten Events Giber den MCP-Protokollkanal zuriick an den MCP-

Rickgabe an den MCP-Client

Client. AnschlieBend flgt der Client die Antwort in das Session-Objekt des LLM ein.

8.
Generierung der Antwort
durch Gemini

Im letzten Schritt interpretiert Gemini die strukturierten Daten und generiert daraus eine lesbare
Antwort in natlrlicher Sprache. Bezogen auf das vorherige Beispiel aus Schritt 1 kénnte eine Antwort
wie folgt aussehen:

,In den letzten 7 Tagen kamen 53% Ihrer Sitzungen (ber Organic Search, 24% (ber Direct
und 18% Uber Paid Social. Die héchste Conversion Rate zeigte Paid Social mit 2,5% im
Betrachtungszeitraum.”

Auf Wunsch kann Gemini auch automatisch ein Diagramm (z.B. vega-Spec oder Matplotlib-Plot)
ausgeben, das direkt im Frontend gerendert werden kann.

mohr
stade

3.1 Einrichtung des MCP-Servers

Wie bereits beschrieben, bildet der MCP-Server die technische
Kernkomponente der Infrastruktur. Er stellt die Tools bereit, Gber
LLMs wie Gemini auf externe Systeme wie Google Analytics 4
(GA4) oder BigQuery zugreifen konnen.

Fir die Bereitstellung empfiehlt Google eine containerisierte
Umgebung auf Cloud Run (Gen 2). Dadurch ist der Server vollstan-

dig serverlos skalierbar, versionierbar und tGber HTTPS erreichbar.
Die Implementierung erfolgt typischerweise in Python, basierend
auf dem offiziellen Paket mcp oder einem vergleichbaren Frame-
work (z. B. FastMCP mit MCP-Integration). Jeder Server bedient
dabei ein oder mehrere Tools, die liber ein selbstbeschreibendes
Schema (JSON) definiert werden.

Fir den Betrieb des Servers sind folgende Grundvoraussetzungen zu schaffen:

e Docker Container (Dockerfile und requirements.txt)

e Deployment nach Cloud Run via Cloud Build oder GitHub Actions

e Authentifizierung liber einen dedizierten Service Account mit entsprechenden IAM-Rollen

e Speicherung sensibler Daten (API-Keys, Tokens) im Secret Manager

e Aktiviertes Cloud Logging und Cloud Monitoring fiir Fehler- und Performance-Analysen

3.2 Einrichtung notwendiger Google Cloud

Credentials

Damit der MCP-Server auf die Google APIs zugreifen kann, missen geeignete Credentials eingerichtet werden:

1. Der Server authentifiziert sich mit Application Default Credentials (ADC) (iber den Service Account.

Service Account

Folgende Rollen missen hierfiir Gber die Google Cloud Console im Service Account (z. B. mcp-ga4-

service@<projekt>.iam.gserviceaccount.com) erstellt und zugewiesen werden:

Rolle

Beschreibung

roles/viewer

Grundlegende Leseberechtigung fiir API-Nutzung

roles/bigquery.dataViewer

Lesezugriff auf BigQuery-Tabellen (GA4-Export)

roles/secretmanager.secretAccessor

Zugriff auf Secrets im Secret Manager

roles/logging.logWriter

Schreiben von Logs in Cloud Logging

roles/run.invoker

Aufrufberechtigung fiir Cloud Run Service

monr

stade
2. AnschlieBend erfolgt die Aktivierung tiber die Google Cloud Console unter AP| & Dienste > Bibliothek
Aktivierung der API durch folgende APIs:
e Google Analytics Data API (analyticsdata.googleapis.com)
e BigQuery API (bigquery.googleapis.com)
e Secret Manager API (secretmanager.googleapis.com)
e Cloud Logging & Monitoring (optional fir Auditing)
3. Im nachsten Schritt miissen folgende API-Keys oder Token in Secret Manager gespeichert werden:
Secrets anlegen
Secret Name Beschreibung
GA4_SERVICE_KEY JSON-Key des Service Accounts
MCP_CLIENT_TOKEN Authentifizierungs-Token fuir den MCP-Client
BQ_PROJECT_ID Optional: Projekt-ID fiir BigQuery-Zugriffe anar
4. Beim Deployment des MCP-Servers missen folgende Credentials als Umgebungsvariablen zur
Umgebungsvariablen Verfligung stehen:

(Environment Variables)
export GOOGLE_APPLICATION_CREDENTIALS="/secrets/ga4-service.json"
export GA4_PROPERTY_ID="123456789"
export BQ_PROJECT_ID="analytics-project"

In Cloud Run kann die Variable iber den Secret Manager automatisch eingebunden werden:

gcloud run deploy mcp-server \
--set-secrets "GA4_SERVICE_KEY=projects/123/secrets/GA4_SERVICE_KEY:latest" \
--region=europe-west4 \
--service-account=mcp-ga4-service@<projekt>.iam.gserviceaccount.com

5. Zur Einhaltung der Datenschutz- und Compliance-Vorgaben sollten auf Organisationsebene folgende
Zugriffsbeschrankungen Policies aktiviert werden:
(Org Policies)

Policy Zweck

constraints/gcp.resourcelocations beschrankt Ressourcen auf EU-Regionen (z. B.

europe-west4, europe-north1).

constraints/iam. limitiert IAM-Mitglieder auf vertrauenswirdige
allowedPolicyMemberDomains Domains.
constraints/run.allowedIngress beschrankt eingehenden Traffic auf interne oder

authentifizierte Quellen.

constraints/secretmanager. stellt sicher, dass Secrets nur in EU-Regionen
allowedLocations gespeichert werden.
6. Zur Nachvollziehbarkeit der Zugriffe sollte Cloud Logging aktiviert sein. Die Standardkonfiguration
Uberwachung und protokolliert Requests, Latenzen, Statuscodes und Tool-Aufrufe (ohne personenbezogene Daten).

Logging

mohr
stade

3.3 Lokales Setup

Fiir Entwicklungs- und Testzwecke kann der MCP-Server auch lokal ausgefiihrt werden. Dies ermdglicht ein unkompliziertes Debug-
ging mit Live-Logs und vermeidet Kosten fiir Cloud-Ressourcen. Daher ist das Setup ideal fir Integrationstests vor dem Deployment

auf Cloud Run.

1.
Virtuelle Umgebung
anlegen

python3 -m venv venv
source venv/bin/activate
pip install mcp google-analytics-data google-cloud-bigquery

2.
Authentifizierung

Der lokale MCP-Server verwendet Application Default Credentials (ADC). Hierfir ist eine Anmeldung

im jeweiligen Google-Konto oder Service Account notwendig:
gcloud auth application-default login
Alternativ kann ein Service Account JSON Uber eine Umgebungsvariable gesetzt werden:

export GOOGLE_APPLICATION_CREDENTIALS="/pfad/zum/service-account.json"

3.
Lokale Konfiguration

Je nach gewlinschtem Transport stehen zwei Varianten zur Verfligung.
python -m mcp.server --connection_type stdio

Variante A — stdio (empfohlen fiir lokale Tests)

uvicorn main:app --host 0.0.0.0 --port 8080

Variante B — HTTP (z. B. mit FastAPI + Uvicorn)

MCP Use Case: Analyse von GA4-Daten mit Gemini

monr
stade

4.

Uber eine lokale Client-Session erfolgt eine Uberpriifung der registrierten Tools:
Testen der Tools

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import asyncio

async def test_tools():

server_params = StdioServerParameters(command="python", args=["-m", "mcp.
server", "--connection_type", "stdio"])
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()

tools = await session.list_tools()

print([t.name for t in tools.tools])

asyncio.run(test_tools())

Daraufhin sollte die Konsole die verflighbaren Tools ausgeben, z. B.:

['gad _get_report', 'bqg_query', 'realtime_overview']

Damit ist der lokale MCP-Server einsatzbereit und kann Requests von Gemini simulieren. Nach

erfolgreichem Test empfiehlt sich die Bereitstellung auf Cloud Run (Gen 2) fur produktive
Umgebungen.

“ T T o

i LR e
::::':’.---.'..\..o' ‘
.‘-'.,-:°.'-'-‘ ‘\.o..o‘.o.
::':::.éﬁ.d.yf’.‘.o.’.o...‘.o .C
:°"::.o”..°..o...°.o.
:j:'.'°'°.o'.°.o.o°o'0
':.. ® ‘......
SR A
:::..'.:.‘.".o.o.o.oo
000.‘.0“.‘.......
et L . 0...0001
.o ®"....
......:.......
o0 0Q 000000
::°:.:'.000001
¥¥i ::"'000
p ..“.12..
® 000 0 0 o0 ¢

mohr
stade

3.4 Remote Setup mit Google Cloud Run

Das Remote Setup ist der Kern der produktiven Bereitstellung eines MCP-Servers. Durch den Betrieb auf Google Cloud Run (Gen 2)
erhdlt der Dienst eine serverlose Architektur mit automatischer Skalierbarkeit, ein sicheres Laufzeitumfeld und eine native Integration
in IAM, Cloud Logging und Secret Manager.

1. Der MCP-Server wird als Docker Container Image verpackt und in der Artifact Registry gespeichert.
Aufbau und Bereitstellung Der Aufbau erfolgt mit Cloud Build:

des Containers
gcloud builds submit --tag
europe-west4-docker.pkg.dev/$PROJECT_ID/mcp/mcp-server:vl

AnschlieBend wird das erstellte Image als Cloud Run Service deployed:

gcloud run deploy mcp-server \
--image=europe-west4-docker.pkg.dev/$PROJECT_ID/mcp/mcp-server:vl \
--region=europe-west4 \
--service-account=mcp-server-sa@$PROJECT_ID.iam.gserviceaccount.com \
--no-allow-unauthenticated \
--set-secrets="MCP_CLIENT_TOKEN=MCP_CLIENT_TOKEN:latest" \
--cpu=1 --memory=512Mi --timeout=300

Das Ergebnis ist ein serverloser MCP-Endpunkt (/mcp), der eingehende Tool Calls authentifiziert,
entgegennimmt und auf die Google APIs zugreift.

2.
Authentifizierung zwischen Ebene Beschreibung
LLM und MCP Server

Bearer-Token-Verfahren Der Client Gbermittelt ein Secret (Authorization:
Bearer ...), das im Secret Manager verwaltet wird.

IAM "Authenticated Invoker" Optional wird der Dienst nur flr autorisierte Service
Accounts innerhalb des Projekts zuganglich gemacht.

VPC Connector + Private Google Access | stellt sicher, dass API-Aufrufe an GA4 oder BigQuery
innerhalb des Google-Backbones bleiben (kein
externer Traffic).

Logging & Monitoring Alle Requests werden automatisch in Cloud Logging
protokolliert, Fehler in Error Reporting erfasst.

Der Zugriff auf den MCP-Server darf ausschliefRlich Gber eine Authentifizierung erfolgen. Dabei gibt
es je nach Typ des Clients zwei empfohlene Varianten:

(a) Bearer-Token-Verfahren (empfohlen fiir LLMs wie Gemini, Claude etc.)

Beim Deployment wird im Secret Manager ein Token gespeichert (MCP_CLIENT_TOKEN). Das LLM
bzw. der Host-Client sendet dieses Token bei jedem Request im Header mit:

Authorization: Bearer <MCP_CLIENT_TOKEN>

mohr
stade

2. AnschlieBend pruft der MCP-Server das Token serverseitig (z. B. Gber den FastAPIl-Header-Validator):
Authentifizierung zwischen

LLM und MCP Server from fastapi import Request, HTTPException

async def verify_ token(request: Request):
auth = request.headers.get("Authorization")
if auth != f"Bearer {os.environ['MCP_CLIENT_TOKEN']}":
raise HTTPException(status_code=401, detail="Unauthorized")

(b) IAM "Authenticated Invoker" (empfohlen fiir interne Services oder Service Accounts)
Der Cloud Run Service wird mit eingeschrankter IAM-Policy betrieben. Das bedeutet, dass nur
bestimmte Service Accounts den Dienst aufrufen durfen:

gcloud run services add-iam-policy-binding mcp-server \
--member="serviceAccount:gemini-client@$PROJECT_ID.iam.gserviceaccount.com" \
--role="roles/run.invoker"

Damit kann nur der registrierte Client (z. B. Gemini Uber Vertex Al oder ein interner Proxy) den
Endpoint aufrufen.

3. Alle Requests werden in Cloud Logging erfasst, einschlieflich:
Netzwerk und Compliance- e Invoker-ID (Service Account OAuth User)
Konfiguration e Request-Zeitstempel

e Too-Name
e Response Code

Fehlgeschlagene Authentifizierungen werden automatisch in Cloud Error Reporting protokolliert.

4. Der MCP-Server kann innerhalb einer EU-Region (z. B. europe-west4) betrieben werden. Dadurch
Datenschutz und Compliance verbleiben alle Datenverarbeitungsvorgiange im Rahmen der EU Data Boundary, wahrend
Authentifizierung und API-Aufrufe tiber das Google-interne Netzwerk abgewickelt werden.

mohr
stade

3.5 Anbindung des LLM Gemini (MCP-Clients)

Sobald der MCP-Server aktiv ist, kdnnen LLM-basierte Clients wie Gemini 2.5 Pro tber das MCP-Protokoll auf definierte Tools zugreifen.
Die Kommunikation lauft Giber standardisierte JSON-Nachrichten, die Funktionsaufrufe (Function Calls) und Ergebnisse strukturieren.

Der Ablauf besteht im Wesentlichen aus drei Phasen:

1. Initialisierung des Clients und Tool-Discovery
2. Erzeugung des Function Calls durch das LLM
3. Weiterleitung des Calls an den MCP-Server und Riickgabe der Antwort

1. Beispiel fir die Initialisierung des MCP Python Clients und den Zugriff auf verfligbare Tools:

Initialisierung des Clients
import asyncio
from mcp import ClientSession
from mcp.client.http import HttpTransport

MCP_URL = "https://mcp-server-ew4.a.run.app/mcp"
TOKEN = "super-secret-client-token"

async def list_tools():
async with HttpTransport(
MCP_URL,
headers={"Authorization": f"Bearer {TOKEN}"}
) as transport:
async with ClientSession(transport) as session:
await session.initialize()
tools = await session.list tools()
print("Verfiligbare Tools:", [t.name for t in tools.tools])

asyncio.run(list_tools())

Als Ergebnis wird folgende Nachricht ausgeliefert, womit die Tool-Discovery abgeschlossen ist und

das LLM nun Funktionsaufrufe an diese Tools generieren kann.

Verfiigbare Tools: ['ga4_get_report', 'bqg_query', 'realtime_overview']

mohr
stade

Aufruf des Tools Gber
Gemini (Function Calling)

Gemini nutzt die Function-Calling-Funktion, um basierend auf natiirlicher Sprache strukturierte
Funktionsaufrufe zu erzeugen. Die generierte Funktionsdefinition wird anschliefend vom Host an
den MCP-Client weitergegeben, der die tatsachliche Ausfiihrung am Server vornimmt.

from google import genai
from google.genai import types
client = genai.Client(api_key=o0s.getenv("GEMINI_API_KEY"))

response = client.models.generate_content(
model="gemini-2.5-pro",
contents="Zeig mir die Sitzungen der letzten 7 Tage in Property 123456",
config=types.GenerateContentConfig(
temperature=0,

tools=[
types.Tool(function_declarations=[{
"name": "gad_get_report”,
"description": "Abfrage der GA4 Data API",
"parameters": {
"property_id": "string", "start": "string",
"end": "string", "metrics": "array", "dimensions": "array"
}
D
]

Daraufhin gibt Gemini einen strukturierten function_call zuriick, zum Beispiel:

{
"function_call": {
"name": "gad_get_report”,
"args": {
"property_id": "123456",
"start": "2025-10-01",
"end": "2025-10-07",
"metrics": ["sessions"],
"dimensions": ["source", "medium"]
¥
¥
¥

Der Host-Prozess nimmt diesen Aufruf entgegen und tbergibt ihn an den MCP-Client (siehe 1. Schritt),
der den Request an den Cloud-Run-Server weiterleitet. Der Server fihrt das Tool aus (z. B. GA4 Data
API), formatiert das Ergebnis und sendet es strukturiert zurtick.

monr

stade
3. Im letzten Schritt wird das Ergebnis vom MCP-Server als JSON-Objekt an den Client zuriickgegeben:
Antwortverarbeitung
{
"header": ["source", "sessions"],
"rows": [
["Organic Search", 5321],
["Direct", 2410],
["Paid Social", 1825]
]J
"metadata": {
"source": "GA4 Data API",
"region": "europe-west4"
}
¥

Gemini interpretiert dieses Ergebnis und generiert daraus eine natlrliche Sprachausgabe, die in

etwa wie folgt aussehen kénnt:

,In den letzten 7 Tagen kamen 53 % der Sitzungen (ber Organic Search, 24 % (ber Direct und

18 % liber Paid Social.”

4. Abschlielende Worte

Mit dem Model Context Protocol (MCP) entsteht eine neue
Moglichkeit, den urspriinglichen Gedanken von Self-Service-
Analytics neu zu beleben. MCP verbindet Large Language Models
(LLMs) direkt mit Datenbanken, APIs oder Analytics-Systemen und
Uberwindet damit die technische Hirde, die Self-Service-Ansatze
bisher oft scheitern lieR. Daten kdnnen nun Uber natirliche
Sprache abgefragt, interpretiert und bereitgestellt werden, was
einen entscheidenden Schritt darstellt, um analytisches Wissen im
Unternehmen breiter zuganglich zu machen.

MCP bildet die technische Briicke zwischen KlI-Modellen und
Datenquellenverschiedener Anbieter. Ob BigQuery, Redshift, Azure
Synapse, Snowflake oder Bl-Systeme wie Power Bl und Tableau —

MCP schafft eine einheitliche Zugriffsschicht, Gber die Modelle
wie Gemini, Claude oder ChatGPT sicher und nachvollziehbar mit
bestehenden Unternehmensdaten interagieren kdnnen.

Zuklnftig wird MCP dabei
kontextbasierte und Kl-gestitzte Analysen in Unternehmen zu

eine zentrale Rolle spielen,
verankern. Mit wachsender Tool-Kompatibilitat und Frameworks
wie FastMCP wird die Entwicklung eigener MCP-Server zunehmend
einfacher und stabiler. Fir Data Engineers, Data Analysts und
Architects eroffnet sich damit ein verlasslicher Weg, bestehende
Analytics-Infrastrukturen in das Zeitalter der nutzerorientierten und

sprachbasierten Datenanalyse zu fiihren.

mohr
stade

Uber mohrstade

Unternehmen

mohrstade ist eine Beratung fiir Marketing-Technologie in Miinchen, Hamburg und Wien. mohrstade ist spezialisiert auf Projekte in den
Bereichen Data Collection, Data Management, Analytics, Marketing Activation und Data Visualization. Diese Services bietet mohrstade in

zertifizierten Partnerschaften mit Marketing-Software-Herstellern an.

Managing Partner

Patrick Mohr

Co-Founder & Managing Partner

Patrick ist Griinder und Geschaftfiihrer von mohrstade.
Bereits wahrend seines Studiums fiir BWL, Finance

und Information (MSc) sammelte er Erfahrungen im
Management Consulting. Spater arbeitet er als SEA
Manager, Data Scientist und Analytics Consultant bei Rocket
Internet, Group M und UDG. 2017 baute er schlieBlich den
Miinchner Standort von Trakken auf. Parallel arbeitet er

als Dozent an Universitaten. Darliber hinaus ist er Co-
Organisator von Analytics Pioneers, der groRten Analytics

Community im DACH-Raum.

patrick@mohrstade.de

im ¢

Marcus Stade

Co-Founder & Head of Analytics

Marcus ist Griinder von mohrstade und Head of Analytics.
Dariiber hinaus ist er Co-Organisator von Analytics Pioneers,
der grofSten Analytics Community im DACH-Raum. Zuvor
hat er im Bereich Web-Development und Online-Marketing
gearbeitet. Auf seinem Blog www.marcusstade.de schreibt

er regelmaRig zu Themen der Digitalen Analyse.

marcus@mohrstade.de

im ¢

mailto:patrick%40mohrstade.de?subject=Kontaktaufnahme
https://www.marcusstade.de/
mailto:marcus%40mohrstade.de?subject=Kontaktaufnahme
http://www.xing.com/profile/PatrickOliver_Mohr
http://www.linkedin.com/in/mohrpatrick
http://www.xing.com/profile/Marcus_Stade

https://www.linkedin.com/in/marcus-stade-2017b236

>

Mohr & Stade GmbH
FriedrichstraRe 1A
80801 Minchen
www.mohrstade.de

fiode

o

ssVooot%...‘ll."" _ o ..
S . °® o®

. . o‘.. ‘..‘ ‘.

v ...\ooo 000...‘

: Laest L eee0? 00000.

— ccame® ® ° ..'...

- “Neo ® ¢ 00000000

- “Neeo *° e 00000000

- ° o
o []
-.“... -.oooo ® oo]
a..v... .. ® %00 0 o Y ... A ...‘
o L.t c s e 000, ®oe,
ﬂu- e o o © e o o A
#n.o. . ® oo L] ..
o-M T ** e o o .. .‘
I‘ * * C L4 ’
.Mo Ce .. e o o s .. L
ocw . o.ot ® * e o e o ° ...
-o-o : . e o o ® o o o C ..
Poa.. -. ® o) ®
L4 ¥ ° e e o e
-”VQ. .. ® o o o L]
e)e! *)) = ® e
Sn"f . . ® o o ° = [
omho . * o 5 ® o °
-o.-ooo’ ® e ® . ° .
A I * ® . o L]
%2 e e S . ° . []
‘e o . . L]
e % oo O A L] °
m....oo” ® e S . [] ® L]
L ICRA . S . . ® L]
oo.ooo“ LI (] ° ° °
-..o‘. . ® . e Y
<ey e, e ® e
onou..o . ° . [] °
5.-L . o L . L4
0\0‘ . . * L] . .. o
9 5 O * ® e
-to.. O ¢ . 00
b : * ‘e ® e
.ﬂu'o . ¢ * [L]
5 1A O oo > >
se ° Y . o ® e ¢
3 P . ° * >
Qe . %, . ® * . e
'o"- LI Y ® L]
oe oaC . * L] L]
l-oo. ... « °® .]
.nl * N\ c- > 00 * > L]
-ﬂuo o . ° L]
ﬁ . . a . L < L] <
ﬁoﬂc . . O ¢ L] ®]
Qg . . « * o
& L2 o-' * * L] ®]
X L []
olﬁ * * * . e ® L]
ooc- . . o] o [J
. .. .- ¢ y L] y ® L]
% . . ¢ . * (]
. L. S . . . A
. * . .

http://www.mohrstade.de
https://www.linkedin.com/company/mohrstade/
http://www.xing.com/pages/mohrstade

