
MCP-Server in der Analyse
von Analytics-Daten
Infrastruktur und Remote Setup mit
Google Cloud Run
Whitepaper

Inhalt

1. Einleitung��� 3

2. �Definition, Funktionsweise und Grenzen��� 4

2.1 Mögliche Vorteile und Chancen der Technologie��� 5

2.2 �Grenzen und Kritik�� 6

3. �MCP Use Case: Analyse von GA4-Daten mit Gemini�� 7

3.1 Einrichtung des MCP-Servers�� 9

3.2 �Einrichtung notwendiger Google Cloud Credentials �� 9

3.3 �Lokales Setup��� 11

3.4 �Remote Setup mit Google Cloud Run��� 13

3.5 �Anbindung des LLM Gemini (MCP-Clients)��� 15

4. �Abschließende Worte�� 17

Über mohrstade��� 18

Veröffentlichung dieses Whitepapers: Dezember 2025

﻿

22

1. Einleitung

Self-Service-Analytics galt lange als Hoffnung, Mitarbeitern den
eigenständigen Zugriff auf Unternehmensdaten und deren Anal-
yse zu ermöglichen. Ziel war es, mehr Verständnis für Prozesse,
Abläufe und Geschäftszusammenhänge zu schaffen. In der Praxis
blieb dieser Ansatz jedoch häufig hinter den Erwartungen zurück.
Fragmentierte Tools, komplexe Schnittstellen und fehlendes
Know-how machten es Fachabteilungen schwer, unabhängig von
Data-Teams wertvolle Erkenntnisse zu gewinnen.

Mit dem Aufkommen von Large Language Models (LLMs) wie
ChatGPT, Claude, Gemini oder Copilot rückt diese Idee nun
wieder in greifbare Nähe. LLMs ermöglichen es, Daten über
natürliche Sprache zu analysieren, ohne über technisches Vor-
wissen zu Tools oder Anwendungen zu verfügen. Damit wird es
für Unternehmen denkbar, Analyse- und Performance-Daten
direkt über Chat-Interfaces bereitzustellen und so den Self-Ser-
vice-Gedanken neu zu beleben.

Eine zentrale Rolle spielt dabei das Model Context Protocol
(MCP). Das MCP ist ein offener technologischer Standard, über
den LLMs sicher und strukturiert mit Datenquellen wie Google
Analytics, BigQuery, Azure Data Lake, AWS Redshift oder anderen
Cloud-Datenbanken und BI-Systemen interagieren können. MCP
fungiert als Brücke zwischen KI-Modellen und Datenquellen und
ermöglicht reproduzierbare und kontextbasierte Analysen. Auch
Anbieter wie Google integrieren MCP in ihre bestehenden Sys-
teme und stellen damit erstmals standardisierte, LLM-kompati-
ble Schnittstellen für Analyse- und Reporting-Funktionen bereit.

Dieses Whitepaper beschreibt die Grundlagen und Architektur
des MCP und veranschaulicht am Beispiel des Google Analytics
MCP Servers auf Cloud Run, wie diese Technologie in der Praxis
implementiert und genutzt werden kann.

„Zukünftig wird MCP eine zentrale Rolle dabei spielen, Analytics-
Daten kontextbewusst in KI-gestützten Anwendungen einzubetten.
Mit wachsender Tool-Kompatibilität und neuen Frameworks wie
FastMCP wird die Entwicklung eigener MCP-Server und Tools
zunehmend einfacher und stabiler. Für Data Engineers, Data Analysts
und Architects eröffnet sich damit ein verlässlicher und sicherer Weg,
bestehende Analytics-Infrastrukturen in das Zeitalter kontextbasierter
Datenverarbeitung mit LLMs zu führen.“

Moritz Bauer
Director Marketing Technology bei mohrstade

Einleitung

33

Das Model Context Protocol (MCP) ist ein offener Standard
von Anthropic. Es definiert, wie Modelle (also Large Language
Models oder KI-Agenten) sicher mit Tools, APIs und Daten-
quellen interagieren können. Als serverseitige Verarbeitungs-
schicht (Processing Layer) fungiert MCP dabei als standardi-

sierte Schnittstelle zwischen dem Modell und externen Systemen
wie bspw. BigQuery, Azure Data Lake oder Amazon Redshift. Ein
MCP-Server implementiert konkrete Tools (z. B. ga4_get_report,
bq_query, realtime_overview), die über das Protokoll aufgerufen
werden können.

2. �Definition, Funktionsweise und Grenzen

„The MCP server exposes tools that allow models to access and analyze Analytics data in a structured, secure and region-
ally controlled environment.“ (Quelle: Google - MCP GitHub Repository)

Abbildung 1: Grundlegende Funktionsweise eines MCP-Servers (Quelle: eigene Darstellung)

Etwas spezifischer bedeutet das:

1.	 Der Nutzer gibt einen Prompt ein, worauf der MCP-Client
(z. B. ChatGPT, Copilot oder Gemini) beim MCP-Server
verfügbare Tools abruft.

2.	 Diese Tools sind definierte Funktionsschnittstellen zu
Datenbanken, Analytics- und BI-Systemen (Looker, Pow-
erBI, Tableau etc.) oder verwandten APIs (z. B. BigQuery,
Azure Data Lake, AWS Redshift).

3.	 Der Server verarbeitet die Anfrage, authentifiziert sich
über einen Service Account oder über OAuth mit Benut-
zerrechten und ruft die jeweilige API auf.

4.	 Die Ergebnisse werden strukturiert (z. B. JSON) an den
Client zurückgegeben, ohne dass dieser direkten API-Zu-
griff benötigt, und dem Nutzer in natürlicher Sprache zur
Verfügung gestellt.

Die Kommunikation erfolgt über standardisierte Transport-
protokolle. In lokalen Entwicklungsumgebungen wird häu-
fig stdio verwendet, während produktive Setups meist auf
HTTP-streamable oder vergleichbare Mechanismen setzen,
um parallele Verbindungen und einen cloudbasierten Betrieb
zu ermöglichen. Der MCP-Server kann in jeder modernen
Cloud-Infrastruktur (z. B. AWS, Azure, Snowflake oder Goo-
gle Cloud) betrieben werden. Allerdings sollte sichergestellt
werden, dass die Datenverarbeitung innerhalb definierter Re-
gionen und Compliance-Richtlinien erfolgt. Der entscheidende

Unterschied zu klassischen serverseitigen Tracking-Ansätzen
(z. B. Tagging-Servern oder Consent-Proxys) besteht darin, dass
MCP keine Tracking-Events oder Cookies verarbeitet. Es stellt
lediglich strukturierte Schnittstellen für bestehende Tools
und Datenquellen bereit. Large Language Models (LLMs) kön-
nen diese Tools standardisiert für Abfragen und Analysen nut-
zen, ohne direkten Zugriff auf die Rohdaten zu benötigen. Der
MCP-Server dient somit nicht als "Tracking-Proxy", sondern als
neutrale Integrationsschicht zwischen KI-Modellen und beste-
henden Analytics- oder Datensystemen.

Definition, Funktionsweise und Grenzen

44

2.1 Mögliche Vorteile und Chancen der Technologie

Das MCP eröffnet eine neue technologische Ebene für die In-
tegration von Google Analytics 4 (GA4) und BigQuery in daten-
getriebene Anwendungen und KI-gestützte Analysen.

Durch den standardisierten Tool-Zugriff über MCP können Un-
ternehmen und Entwickler Daten sicher, kontrolliert und auto-
matisiert in modellbasierte Workflows integrieren.

Standardisierung
MCP definiert ein einheitliches Protokoll, über das Modelle (z. B. Gemini) auf Tools und APIs zugreifen können. Dadurch entfällt die
bisher notwendige individuelle API-Integration pro Datenquelle.

Sicherheit und Zugriffskontrolle
Der Zugriff auf Analytics- oder BigQuery-Daten erfolgt ausschließlich über den MCP-Server, der in einer EU-Region (z. B. europe-west4)
betrieben wird und durch IAM-Policies sowie Secret Manager abgesichert wird. Alternativ kann die Authentifizierung auch über OAuth
erfolgen. In diesem Fall erhält der MCP-Server nur die Berechtigung, die der jeweilige Nutzer beim Zugriff explizit freigibt. Dadurch
lassen sich Zugriffsrechte granularer verwalten und auf Projektebene einschränken.

Datenschutz und regionales Processing
Der MCP-Server selbst kann innerhalb der EU Data Boundary betrieben werden, sodass die Datenverarbeitung regional erfolgt. Die
Abfrage der Analytics-Daten erfolgt hingegen über die globalen GA4-API-Endpunkte (analyticsdata.googleapis.com). Damit kann die
Verarbeitung zwar regional kontrolliert, jedoch ein vollständiger "EU-Only-Datenfluss" nicht garantiert werden. Demnach reduziert das
MCP Übermittlungsrisiken, ersetzt aber keine vertraglichen Datenschutzmaßnahmen gemäß DSGVO.

Schnittstellen für LLMs
Modelle wie Gemini oder Claude können durch MCP verschiedene Tools automatisch entdecken, aufrufen und deren Parameter
interpretieren. Das ermöglicht präzise, reproduzierbare und auditierbare Datenabfragen ohne direkten Zugriff auf Rohdaten.

Automatisierung von Analyse- und Reporting-Workflows
Über Tools wie ga4_get_report oder bq_query lassen sich Berichte generieren, aggregieren und in natürlicher Sprache übersetzen. Das
schafft neue Möglichkeiten für die automatisierte Erstellung von Reportings/Dashboards und somit eine Entscheidungsunterstützung
durch das LLM.

Definition, Funktionsweise und Grenzen

55

2.2 �Grenzen und Kritik

Trotz seiner technologischen Stärke befindet sich das MCP noch
in einer frühen Phase der praktischen Adaption. Insbesondere im
Zusammenspiel von LLMs, Analytics-Daten und regulatorischen

Anforderungen ergeben sich noch einige Einschränkungen und
offene Fragen.

Begrenzte Tool-Verfügbarkeit
Aktuell stellt der Google Analytics MCP-Server nur wenige vordefinierte Tools bereit (z. B. GA4 Data API, BigQuery Export). Komplexe
oder kombinierte Abfragen erfordern eigene Tool-Definitionen oder Anpassungen im Code.

Erhöhter technischer Aufwand für Eigenbetrieb
Der Betrieb eines MCP-Servers auf Cloud Run erfordert Kenntnisse in Containern, IAM, Secrets und Logging. Für nicht-technische Teams
kann die Implementierung zunächst komplex wirken.

Offene Governance-Fragen
Das Protokoll selbst wird von der Open-Source-Community (Anthropic/Google) weiterentwickelt. Es gibt noch keinen formellen
Standardisierungsprozess (z. B. über IETF oder W3C). Langfristig kann sich die Spezifikation verändern, was regelmäßige Wartung
erforderlich macht. Obwohl der Server die Datenverarbeitung lokalisiert, bleibt der nachgelagerte Modell-Kontext (z. B. Gemini-Session)
ein potenzieller Risikofaktor.

„MCP belebt den Gedanken von Self-Service-Analytics neu. Es verbindet
LLMs direkt mit Datenquellen und ermöglicht so auch Mitarbeitenden
ohne technisches Know-how, Analysen einfach über natürliche Sprache
durchzuführen.“

Parick Mohr
Co-Founder und Managing Partner bei mohrstade

Definition, Funktionsweise und Grenzen

66

Abbildung 2: Vereinfachte-MCP-Infrastruktur mit Analytics Backend (Quelle: eigene Darstellung)

Die Abbildung zeigt, wie Large Language Models (LLMs) wie Ge-
mini mithilfe des Model Context Protocols (MCP) auf unter-
schiedliche Datenquellen zugreifen können. In diesem Szenario
fungiert MCP als standardisierte Integrationsschicht zwischen
dem Modell und externen Systemen wie Google Analytics 4 (GA4)

oder BigQuery. Ziel des Modells ist es, dass es in natürlicher
Sprache formulierte Fragen (z.B. „Wie viele Sitzungen gab es in
der vergangenen Woche?“) in strukturierte API-Abfragen über-
setzen und die Ergebnisse anschließend interpretieren kann. Im
Folgenden wird dieser Prozess einmal detailliert aufgeschlüsselt:

3. �MCP Use Case: Analyse von GA4-Daten mit
Gemini

1.
Anfrage durch den Nutzer

Im ersten Schritt gibt der Nutzer in einem LLM-basierten System (bspw. Claude, Gemini etc.) eine
natürliche Sprachabfrage wie z. B. „Zeig mir die Conversions der letzten 7 Tage nach Quelle/Medium“
ein. Anschließend übergibt der Host den Prompt an den MCP-Client (client.py).

2.
Verarbeitung durch den
MCP-Client

Der Client hält die Verbindung zum LLM und kennt die verfügbaren Tools auf den registrierten MCP-
Servern (Tool-Discovery).

3.
Function Calling

Der Client übermittelt den Prompt, die Tool-Beschreibung (Function-Schema) und optionale
Instruktionen an das Modell (z. B. „Nutze GA4-Tool für Metriken, BigQuery-Tool für Event-Daten“).

Das Modell (Gemini) erzeugt anschließend einen function_call mit Tool-Name und Parametern (z.
B. ga4_get_report, Property-ID, Zeitraum, Metriken, Dimensionen). Dieser strukturierte Call wird
anschließend an den MCP-Client zurückgegeben.

Wichtig: Der Client enthält keine Secrets für GA4/BigQuery. Er ruft ausschließlich Tools an.

MCP Use Case: Analyse von GA4-Daten mit Gemini

77

4.
Übergabe des funtion_call
an den MCP-Server

Der Client sendet den Funktionsaufruf über den standardisierten Transport (HTTP-streamable) an
den MCP-Server, der auf Google Cloud Run (Gen 2) betrieben wird.

5.
Authentifizierung und API-Call

Der MCP-Server interpretiert anschließend diesen Request, prüft das Schema und entscheidet,
welche Datenquelle verwendet werden soll. Für aggregierte Kennzahlen (z. B. Sitzungen, Nutzer,
Conversions) nutzt er die GA4 Data API. Für detaillierte, eventbasierte Analysen (z.B. Funnel,
Attributionspfade, Events) nutzt er den BigQuery Export der jeweiligen GA4-Property.

Der MCP-Server kommuniziert über Web-APIs mit Google-Diensten. Dabei erfolgt die
Authentifizierung über einen Google Service Account, dessen Zugangsdaten im Secret Manager oder
als Umgebungsvariable hinterlegt sind.

Der Endpunkt der GA4 Data API (https://analyticsdata.googleapis.com) liefert aggregierte Reports
nach Metriken und Dimensionen (5A), während der BigQuery Export (https://bigquery.googleapis.
com) Abfragen via SQL granular auf Event-Level ermöglicht (5B). Beide Endpunkte liegen innerhalb
der Google Cloud EU Data Boundary, was für die GDPR-/DSGVO-Konformität entscheidend ist.

6.
Datenverarbeitung und
Formatierung

Nach Erhalt der Antwort von GA4 oder BigQuery übernimmt der Server:
•	 das Parsing und Normalisieren der Daten (z. B. in JSON- oder Tabellenform)
•	 optional die Aggregation oder Visualisierung (z. B. Diagramm-Spezifikationen für Gemini)
•	 die Vorbereitung für den Rücktransport an den MCP-Client

7.
Rückgabe an den MCP-Client

Der MCP-Server sendet die verarbeiteten Events über den MCP-Protokollkanal zurück an den MCP-
Client. Anschließend fügt der Client die Antwort in das Session-Objekt des LLM ein.

8.
Generierung der Antwort
durch Gemini

Im letzten Schritt interpretiert Gemini die strukturierten Daten und generiert daraus eine lesbare
Antwort in natürlicher Sprache. Bezogen auf das vorherige Beispiel aus Schritt 1 könnte eine Antwort
wie folgt aussehen:

Auf Wunsch kann Gemini auch automatisch ein Diagramm (z.B. vega-Spec oder Matplotlib-Plot)
ausgeben, das direkt im Frontend gerendert werden kann.

{
 "header": ["channel", "sessions", "conversions"],
 "rows": [
 ["Organic Search", 5321, 94],
 ["Direct", 2410, 63],
 ["Paid Social", 1895, 48]
],
 "metadata": {"source": "GA4 Data API", "fetched_at": "2025-10-09T09:45:00Z"}
}

Beispiel einer vereinfachten GA4-Server-Antwort

„In den letzten 7 Tagen kamen 53% Ihrer Sitzungen über Organic Search, 24% über Direct
und 18% über Paid Social. Die höchste Conversion Rate zeigte Paid Social mit 2,5% im
Betrachtungszeitraum.“

MCP Use Case: Analyse von GA4-Daten mit Gemini

88

Wie bereits beschrieben, bildet der MCP-Server die technische
Kernkomponente der Infrastruktur. Er stellt die Tools bereit, über
LLMs wie Gemini auf externe Systeme wie Google Analytics 4
(GA4) oder BigQuery zugreifen können.
Für die Bereitstellung empfiehlt Google eine containerisierte
Umgebung auf Cloud Run (Gen 2). Dadurch ist der Server vollstän-

dig serverlos skalierbar, versionierbar und über HTTPS erreichbar.
Die Implementierung erfolgt typischerweise in Python, basierend
auf dem offiziellen Paket mcp oder einem vergleichbaren Frame-
work (z. B. FastMCP mit MCP-Integration). Jeder Server bedient
dabei ein oder mehrere Tools, die über ein selbstbeschreibendes
Schema (JSON) definiert werden.

3.1 Einrichtung des MCP-Servers

Für den Betrieb des Servers sind folgende Grundvoraussetzungen zu schaffen:

•	 Docker Container (Dockerfile und requirements.txt)
•	 Deployment nach Cloud Run via Cloud Build oder GitHub Actions
•	 Authentifizierung über einen dedizierten Service Account mit entsprechenden IAM-Rollen
•	 Speicherung sensibler Daten (API-Keys, Tokens) im Secret Manager
•	 Aktiviertes Cloud Logging und Cloud Monitoring für Fehler- und Performance-Analysen

3.2 �Einrichtung notwendiger Google Cloud
Credentials

Damit der MCP-Server auf die Google APIs zugreifen kann, müssen geeignete Credentials eingerichtet werden:

1.
Service Account

Der Server authentifiziert sich mit Application Default Credentials (ADC) über den Service Account.
Folgende Rollen müssen hierfür über die Google Cloud Console im Service Account (z. B. mcp-ga4-
service@<projekt>.iam.gserviceaccount.com) erstellt und zugewiesen werden:

Rolle Beschreibung

roles/viewer Grundlegende Leseberechtigung für API-Nutzung

roles/bigquery.dataViewer Lesezugriff auf BigQuery-Tabellen (GA4-Export)

roles/secretmanager.secretAccessor Zugriff auf Secrets im Secret Manager

roles/logging.logWriter Schreiben von Logs in Cloud Logging

roles/run.invoker Aufrufberechtigung für Cloud Run Service

MCP Use Case: Analyse von GA4-Daten mit Gemini

99

2.
Aktivierung der API

Anschließend erfolgt die Aktivierung über die Google Cloud Console unter API & Dienste > Bibliothek
durch folgende APIs:
•	 Google Analytics Data API (analyticsdata.googleapis.com)
•	 BigQuery API (bigquery.googleapis.com)
•	 Secret Manager API (secretmanager.googleapis.com)
•	 Cloud Logging & Monitoring (optional für Auditing)

3.
Secrets anlegen

Im nächsten Schritt müssen folgende API-Keys oder Token in Secret Manager gespeichert werden:

4.
Umgebungsvariablen
(Environment Variables)

Beim Deployment des MCP-Servers müssen folgende Credentials als Umgebungsvariablen zur
Verfügung stehen:

In Cloud Run kann die Variable über den Secret Manager automatisch eingebunden werden:

5.
Zugriffsbeschränkungen
(Org Policies)

Zur Einhaltung der Datenschutz- und Compliance-Vorgaben sollten auf Organisationsebene folgende
Policies aktiviert werden:

6.
Überwachung und
Logging

Zur Nachvollziehbarkeit der Zugriffe sollte Cloud Logging aktiviert sein. Die Standardkonfiguration
protokolliert Requests, Latenzen, Statuscodes und Tool-Aufrufe (ohne personenbezogene Daten).

Secret Name Beschreibung

GA4_SERVICE_KEY JSON-Key des Service Accounts

MCP_CLIENT_TOKEN Authentifizierungs-Token für den MCP-Client

BQ_PROJECT_ID Optional: Projekt-ID für BigQuery-Zugriffe anar

export GOOGLE_APPLICATION_CREDENTIALS="/secrets/ga4-service.json"
export GA4_PROPERTY_ID="123456789"
export BQ_PROJECT_ID="analytics-project"

gcloud run deploy mcp-server \
 --set-secrets "GA4_SERVICE_KEY=projects/123/secrets/GA4_SERVICE_KEY:latest" \
 --region=europe-west4 \
 --service-account=mcp-ga4-service@<projekt>.iam.gserviceaccount.com

Policy Zweck

constraints/gcp.resourceLocations beschränkt Ressourcen auf EU-Regionen (z. B.
europe-west4, europe-north1).

constraints/iam.
allowedPolicyMemberDomains

limitiert IAM-Mitglieder auf vertrauenswürdige
Domains.

constraints/run.allowedIngress beschränkt eingehenden Traffic auf interne oder
authentifizierte Quellen.

constraints/secretmanager.
allowedLocations

stellt sicher, dass Secrets nur in EU-Regionen
gespeichert werden.

MCP Use Case: Analyse von GA4-Daten mit Gemini

1010

3.3 �Lokales Setup

1.
Virtuelle Umgebung
anlegen

2.
Authentifizierung

Der lokale MCP-Server verwendet Application Default Credentials (ADC). Hierfür ist eine Anmeldung
im jeweiligen Google-Konto oder Service Account notwendig:

Alternativ kann ein Service Account JSON über eine Umgebungsvariable gesetzt werden:

3.
Lokale Konfiguration

Je nach gewünschtem Transport stehen zwei Varianten zur Verfügung.

python3 -m venv venv
source venv/bin/activate
pip install mcp google-analytics-data google-cloud-bigquery

gcloud auth application-default login

export GOOGLE_APPLICATION_CREDENTIALS="/pfad/zum/service-account.json"

python -m mcp.server --connection_type stdio

Variante A – stdio (empfohlen für lokale Tests)

uvicorn main:app --host 0.0.0.0 --port 8080

Variante B – HTTP (z. B. mit FastAPI + Uvicorn)

Für Entwicklungs- und Testzwecke kann der MCP-Server auch lokal ausgeführt werden. Dies ermöglicht ein unkompliziertes Debug-
ging mit Live-Logs und vermeidet Kosten für Cloud-Ressourcen. Daher ist das Setup ideal für Integrationstests vor dem Deployment
auf Cloud Run.

MCP Use Case: Analyse von GA4-Daten mit Gemini

1111

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import asyncio

async def test_tools():
 server_params = StdioServerParameters(command="python", args=["-m", "mcp.
server", "--connection_type", "stdio"])
 async with stdio_client(server_params) as (read, write):
 async with ClientSession(read, write) as session:
 await session.initialize()
 tools = await session.list_tools()
 print([t.name for t in tools.tools])

asyncio.run(test_tools())

['ga4_get_report', 'bq_query', 'realtime_overview']

4.
Testen der Tools

Über eine lokale Client-Session erfolgt eine Überprüfung der registrierten Tools:

Daraufhin sollte die Konsole die verfügbaren Tools ausgeben, z. B.:

Damit ist der lokale MCP-Server einsatzbereit und kann Requests von Gemini simulieren. Nach
erfolgreichem Test empfiehlt sich die Bereitstellung auf Cloud Run (Gen 2) für produktive
Umgebungen.

MCP Use Case: Analyse von GA4-Daten mit Gemini

1212

3.4 �Remote Setup mit Google Cloud Run

Das Remote Setup ist der Kern der produktiven Bereitstellung eines MCP-Servers. Durch den Betrieb auf Google Cloud Run (Gen 2)
erhält der Dienst eine serverlose Architektur mit automatischer Skalierbarkeit, ein sicheres Laufzeitumfeld und eine native Integration
in IAM, Cloud Logging und Secret Manager.

1.
Aufbau und Bereitstellung
des Containers

Der MCP-Server wird als Docker Container Image verpackt und in der Artifact Registry gespeichert.
Der Aufbau erfolgt mit Cloud Build:

Anschließend wird das erstellte Image als Cloud Run Service deployed:

Das Ergebnis ist ein serverloser MCP-Endpunkt (/mcp), der eingehende Tool Calls authentifiziert,
entgegennimmt und auf die Google APIs zugreift.

2.
Authentifizierung zwischen
LLM und MCP Server

Der Zugriff auf den MCP-Server darf ausschließlich über eine Authentifizierung erfolgen. Dabei gibt
es je nach Typ des Clients zwei empfohlene Varianten:

(a) Bearer-Token-Verfahren (empfohlen für LLMs wie Gemini, Claude etc.)
Beim Deployment wird im Secret Manager ein Token gespeichert (MCP_CLIENT_TOKEN). Das LLM
bzw. der Host-Client sendet dieses Token bei jedem Request im Header mit:

gcloud builds submit --tag
europe-west4-docker.pkg.dev/$PROJECT_ID/mcp/mcp-server:v1

gcloud run deploy mcp-server \
 --image=europe-west4-docker.pkg.dev/$PROJECT_ID/mcp/mcp-server:v1 \
 --region=europe-west4 \
 --service-account=mcp-server-sa@$PROJECT_ID.iam.gserviceaccount.com \
 --no-allow-unauthenticated \
 --set-secrets="MCP_CLIENT_TOKEN=MCP_CLIENT_TOKEN:latest" \
 --cpu=1 --memory=512Mi --timeout=300

Ebene Beschreibung

Bearer-Token-Verfahren Der Client übermittelt ein Secret (Authorization:
Bearer …), das im Secret Manager verwaltet wird.

IAM "Authenticated Invoker" Optional wird der Dienst nur für autorisierte Service
Accounts innerhalb des Projekts zugänglich gemacht.

VPC Connector + Private Google Access stellt sicher, dass API-Aufrufe an GA4 oder BigQuery
innerhalb des Google-Backbones bleiben (kein
externer Traffic).

Logging & Monitoring Alle Requests werden automatisch in Cloud Logging
protokolliert, Fehler in Error Reporting erfasst.

Authorization: Bearer <MCP_CLIENT_TOKEN>

MCP Use Case: Analyse von GA4-Daten mit Gemini

1313

2.
Authentifizierung zwischen
LLM und MCP Server

Anschließend prüft der MCP-Server das Token serverseitig (z. B. über den FastAPI-Header-Validator):

(b) IAM "Authenticated Invoker" (empfohlen für interne Services oder Service Accounts)
Der Cloud Run Service wird mit eingeschränkter IAM-Policy betrieben. Das bedeutet, dass nur
bestimmte Service Accounts den Dienst aufrufen dürfen:

Damit kann nur der registrierte Client (z. B. Gemini über Vertex AI oder ein interner Proxy) den
Endpoint aufrufen.

3.
Netzwerk und Compliance-
Konfiguration

Alle Requests werden in Cloud Logging erfasst, einschließlich:
•	 Invoker-ID (Service Account OAuth User)
•	 Request-Zeitstempel
•	 Too-Name
•	 Response Code

Fehlgeschlagene Authentifizierungen werden automatisch in Cloud Error Reporting protokolliert.

4.
Datenschutz und Compliance

Der MCP-Server kann innerhalb einer EU-Region (z. B. europe-west4) betrieben werden. Dadurch
verbleiben alle Datenverarbeitungsvorgänge im Rahmen der EU Data Boundary, während
Authentifizierung und API-Aufrufe über das Google-interne Netzwerk abgewickelt werden.

from fastapi import Request, HTTPException

async def verify_token(request: Request):
 auth = request.headers.get("Authorization")
 if auth != f"Bearer {os.environ['MCP_CLIENT_TOKEN']}":
 raise HTTPException(status_code=401, detail="Unauthorized")

gcloud run services add-iam-policy-binding mcp-server \
 --member="serviceAccount:gemini-client@$PROJECT_ID.iam.gserviceaccount.com" \
 --role="roles/run.invoker"

MCP Use Case: Analyse von GA4-Daten mit Gemini

1414

3.5 �Anbindung des LLM Gemini (MCP-Clients)

Sobald der MCP-Server aktiv ist, können LLM-basierte Clients wie Gemini 2.5 Pro über das MCP-Protokoll auf definierte Tools zugreifen.
Die Kommunikation läuft über standardisierte JSON-Nachrichten, die Funktionsaufrufe (Function Calls) und Ergebnisse strukturieren.
Der Ablauf besteht im Wesentlichen aus drei Phasen:

1.	 Initialisierung des Clients und Tool-Discovery
2.	 Erzeugung des Function Calls durch das LLM
3.	 Weiterleitung des Calls an den MCP-Server und Rückgabe der Antwort

1.
Initialisierung des Clients

Beispiel für die Initialisierung des MCP Python Clients und den Zugriff auf verfügbare Tools:

Als Ergebnis wird folgende Nachricht ausgeliefert, womit die Tool-Discovery abgeschlossen ist und
das LLM nun Funktionsaufrufe an diese Tools generieren kann.

import asyncio
from mcp import ClientSession
from mcp.client.http import HttpTransport

MCP_URL = "https://mcp-server-ew4.a.run.app/mcp"
TOKEN = "super-secret-client-token"

async def list_tools():
 async with HttpTransport(
 MCP_URL,
 headers={"Authorization": f"Bearer {TOKEN}"}
) as transport:
 async with ClientSession(transport) as session:
 await session.initialize()
 tools = await session.list_tools()
 print("Verfügbare Tools:", [t.name for t in tools.tools])

asyncio.run(list_tools())

Verfügbare Tools: ['ga4_get_report', 'bq_query', 'realtime_overview']

MCP Use Case: Analyse von GA4-Daten mit Gemini

1515

2.
Aufruf des Tools über
Gemini (Function Calling)

Gemini nutzt die Function-Calling-Funktion, um basierend auf natürlicher Sprache strukturierte
Funktionsaufrufe zu erzeugen. Die generierte Funktionsdefinition wird anschließend vom Host an
den MCP-Client weitergegeben, der die tatsächliche Ausführung am Server vornimmt.

Daraufhin gibt Gemini einen strukturierten function_call zurück, zum Beispiel:

Der Host-Prozess nimmt diesen Aufruf entgegen und übergibt ihn an den MCP-Client (siehe 1. Schritt),
der den Request an den Cloud-Run-Server weiterleitet. Der Server führt das Tool aus (z. B. GA4 Data
API), formatiert das Ergebnis und sendet es strukturiert zurück.

from google import genai
from google.genai import types
client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))

response = client.models.generate_content(
 model="gemini-2.5-pro",
 contents="Zeig mir die Sitzungen der letzten 7 Tage in Property 123456",
 config=types.GenerateContentConfig(
 temperature=0,
 tools=[
 types.Tool(function_declarations=[{
 "name": "ga4_get_report",
 "description": "Abfrage der GA4 Data API",
 "parameters": {
 "property_id": "string", "start": "string",
 "end": "string", "metrics": "array", "dimensions": "array"
 }
 }])
]
)
)

{
 "function_call": {
 "name": "ga4_get_report",
 "args": {
 "property_id": "123456",
 "start": "2025-10-01",
 "end": "2025-10-07",
 "metrics": ["sessions"],
 "dimensions": ["source", "medium"]
 }
 }
}

MCP Use Case: Analyse von GA4-Daten mit Gemini

1616

3.
Antwortverarbeitung

Im letzten Schritt wird das Ergebnis vom MCP-Server als JSON-Objekt an den Client zurückgegeben:

Gemini interpretiert dieses Ergebnis und generiert daraus eine natürliche Sprachausgabe, die in
etwa wie folgt aussehen könnt:

{
 "header": ["source", "sessions"],
 "rows": [
 ["Organic Search", 5321],
 ["Direct", 2410],
 ["Paid Social", 1825]
],
 "metadata": {
 "source": "GA4 Data API",
 "region": "europe-west4"
 }
}

„In den letzten 7 Tagen kamen 53 % der Sitzungen über Organic Search, 24 % über Direct und
18 % über Paid Social.“

4. �Abschließende Worte

Mit dem Model Context Protocol (MCP) entsteht eine neue
Möglichkeit, den ursprünglichen Gedanken von Self-Service-
Analytics neu zu beleben. MCP verbindet Large Language Models
(LLMs) direkt mit Datenbanken, APIs oder Analytics-Systemen und
überwindet damit die technische Hürde, die Self-Service-Ansätze
bisher oft scheitern ließ. Daten können nun über natürliche
Sprache abgefragt, interpretiert und bereitgestellt werden, was
einen entscheidenden Schritt darstellt, um analytisches Wissen im
Unternehmen breiter zugänglich zu machen.

MCP bildet die technische Brücke zwischen KI-Modellen und
Datenquellen verschiedener Anbieter. Ob BigQuery, Redshift, Azure
Synapse, Snowflake oder BI-Systeme wie Power BI und Tableau –

MCP schafft eine einheitliche Zugriffsschicht, über die Modelle
wie Gemini, Claude oder ChatGPT sicher und nachvollziehbar mit
bestehenden Unternehmensdaten interagieren können.

Zukünftig wird MCP eine zentrale Rolle dabei spielen,
kontextbasierte und KI-gestützte Analysen in Unternehmen zu
verankern. Mit wachsender Tool-Kompatibilität und Frameworks
wie FastMCP wird die Entwicklung eigener MCP-Server zunehmend
einfacher und stabiler. Für Data Engineers, Data Analysts und
Architects eröffnet sich damit ein verlässlicher Weg, bestehende
Analytics-Infrastrukturen in das Zeitalter der nutzerorientierten und
sprachbasierten Datenanalyse zu führen.

Abschließende Worte

1717

Über mohrstade

Unternehmen

mohrstade ist eine Beratung für Marketing-Technologie in München, Hamburg und Wien. mohrstade ist spezialisiert auf Projekte in den
Bereichen Data Collection, Data Management, Analytics, Marketing Activation und Data Visualization. Diese Services bietet mohrstade in
zertifizierten Partnerschaften mit Marketing-Software-Herstellern an.

Patrick Mohr
Co-Founder & Managing Partner

Patrick ist Gründer und Geschäftführer von mohrstade.
Bereits während seines Studiums für BWL, Finance
und Information (MSc) sammelte er Erfahrungen im
Management Consulting. Später arbeitet er als SEA
Manager, Data Scientist und Analytics Consultant bei Rocket
Internet, Group M und UDG. 2017 baute er schließlich den
Münchner Standort von Trakken auf. Parallel arbeitet er
als Dozent an Universitäten. Darüber hinaus ist er Co-
Organisator von Analytics Pioneers, der größten Analytics
Community im DACH-Raum.

patrick@mohrstade.de

Marcus Stade
Co-Founder & Head of Analytics

Marcus ist Gründer von mohrstade und Head of Analytics.
Darüber hinaus ist er Co-Organisator von Analytics Pioneers,
der größten Analytics Community im DACH-Raum. Zuvor
hat er im Bereich Web-Development und Online-Marketing
gearbeitet. Auf seinem Blog www.marcusstade.de schreibt
er regelmäßig zu Themen der Digitalen Analyse.

marcus@mohrstade.de

Managing Partner

18

mailto:patrick%40mohrstade.de?subject=Kontaktaufnahme
https://www.marcusstade.de/
mailto:marcus%40mohrstade.de?subject=Kontaktaufnahme
http://www.xing.com/profile/PatrickOliver_Mohr
http://www.linkedin.com/in/mohrpatrick
http://www.xing.com/profile/Marcus_Stade

https://www.linkedin.com/in/marcus-stade-2017b236

Mohr & Stade GmbH
Friedrichstraße 1A
80801 München

www.mohrstade.de

http://www.mohrstade.de
https://www.linkedin.com/company/mohrstade/
http://www.xing.com/pages/mohrstade

